
CoreSight™ DAP-Lite

Technical Reference Manual
Copyright © 2006 - 2008 ARM Limited. All rights reserved.
ARM DDI 0316D



 

CoreSight DAP-Lite
Technical Reference Manual

Copyright © 2006 - 2008 ARM Limited. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited in the EU and 
other countries, except as otherwise stated below in this proprietary notice. Other brands and names 
mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document 
may be adapted or reproduced in any material form except with the prior written permission of the copyright 
holder.

The product described in this document is subject to continuous developments and improvements. All 
particulars of the product and its use contained in this document are given by ARM in good faith. However, 
all warranties implied or expressed, including but not limited to implied warranties of merchantability, or 
fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable 
for any loss or damage arising from the use of any information in this document, or any error or omission in 
such information, or any incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to 
license restrictions in accordance with the terms of the agreement entered into by ARM and the party that 
ARM delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Change History

Date Issue Confidentiality Change

06 January 2006 A Non-Confidential First release.

14 December 2006 B Non-Confidential Second release.

19 October 2007 C Non-Confidential Alignment with ARM Debug Interface v5 Architecture Specification. 

Additional corrections and enhancements.

01 May 2008 D Non-Confidential Fourth release.
ii Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



 

Web Address

http://www.arm.com
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. iii



 

iv Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Contents
CoreSight DAP-Lite Technical Reference 
Manual

Preface
About this book ............................................................................................. xii
Feedback ..................................................................................................... xvi

Chapter 1 Introduction
1.1 About the DAP-Lite .....................................................................................  1-2
1.2 DAP-Lite structure .......................................................................................  1-3
1.3 DAP-Lite control flow ..................................................................................  1-5
1.4 DAP-Lite block summary .............................................................................  1-6

Chapter 2 Functional Description
2.1 About the Debug Port .................................................................................  2-2
2.2 SWJ-DP ......................................................................................................  2-3
2.3 JTAG-DP ...................................................................................................  2-11
2.4 SW-DP ......................................................................................................  2-13
2.5 Common debug port features and registers ..............................................  2-19
2.6 Access ports .............................................................................................  2-31
2.7 APB-AP .....................................................................................................  2-32
2.8 APB-Mux ...................................................................................................  2-41
2.9 ROM table .................................................................................................  2-46
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. v



Contents
2.10 Authentication requirements .....................................................................  2-49
2.11 Clocks and resets .....................................................................................  2-50
2.12 Connections to debug components and system interfaces ......................  2-51

Chapter 3 Programmer’s Model
3.1 About the programmer’s model ..................................................................  3-2

Appendix A DAP-Lite Ports
A.1 CoreSight DAP signals ...............................................................................  A-2

Appendix B Revisions

Glossary
vi Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



List of Tables
CoreSight DAP-Lite Technical Reference 
Manual

Change History ............................................................................................................. ii
Table 1-1 DAP-Lite block summary ...........................................................................................  1-6
Table 2-1 JTAG-DP physical interface ....................................................................................  2-12
Table 2-2 JTAG-DP registers ..................................................................................................  2-12
Table 2-3 Terms used in SW-DP timing ..................................................................................  2-16
Table 2-4 Summary of Debug Port registers ...........................................................................  2-21
Table 2-5 Identification Code Register bit assignments ..........................................................  2-22
Table 2-6 JEDEC JEP-106 manufacturer ID code, with ARM Limited values .........................  2-23
Table 2-7 Control/Status Register bit assignments .................................................................  2-24
Table 2-8 AP Select Register bit assignments ........................................................................  2-26
Table 2-9 Wire Control Register bit assignments ....................................................................  2-28
Table 2-10 Turnaround tristate period field bit definitions .........................................................  2-29
Table 2-11 Wire operating mode bit definitions .........................................................................  2-29
Table 2-12 APB-AP other ports .................................................................................................  2-32
Table 2-13 APB-AP registers ....................................................................................................  2-33
Table 2-14 APB Control/Status Word Register bit assignments ...............................................  2-35
Table 2-15 APB-AP Transfer Address Register bit assignments ..............................................  2-37
Table 2-16 ABP-AP Data Read/Write Register bit assignments ...............................................  2-37
Table 2-17 APB-AP Banked Data Registers bit assignments ...................................................  2-38
Table 2-18 Debug APB ROM Address Register bit assignments ..............................................  2-38
Table 2-19 APB-AP Identification Register bit assignments .....................................................  2-39
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. vii



List of Tables
Table 2-20 APB-Mux miscellaneous signals .............................................................................  2-42
Table 2-21 ROM table registers ................................................................................................  2-46
Table 2-22 ROM table entries bit assignments .........................................................................  2-48
Table A-1 CoreSight DAP signals .............................................................................................  A-2
Table B-1 Differences between issue C and issue D ................................................................  B-1
viii Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



List of Figures
CoreSight DAP-Lite Technical Reference 
Manual

Key to timing diagram conventions ............................................................................ xiv
Figure 1-1 DAP-Lite structure .....................................................................................................  1-3
Figure 1-2 DAP-Lite control flow .................................................................................................  1-5
Figure 2-1 SWJ-DP external connections ..................................................................................  2-4
Figure 2-2 SWJ-DP signal clamping ...........................................................................................  2-6
Figure 2-3 SWD and JTAG select state diagram .......................................................................  2-8
Figure 2-4 SW-DP acknowledgement timing ............................................................................  2-16
Figure 2-5 SW-DP to DAP bus timing for write .........................................................................  2-17
Figure 2-6 SW-DP to DAP bus timing for read .........................................................................  2-17
Figure 2-7 SW-DP idle timing ...................................................................................................  2-18
Figure 2-8 Identification Code Register bit assignments ..........................................................  2-22
Figure 2-9 Control/Status Register bit assignments .................................................................  2-23
Figure 2-10 AP Select Register bit assignments ........................................................................  2-26
Figure 2-11 Wire Control Register bit assignments ....................................................................  2-28
Figure 2-12 APB-AP functional blocks .......................................................................................  2-32
Figure 2-13 APB-AP Control/Status Word Register bit assignments .........................................  2-34
Figure 2-14 APB-AP Transfer Address Register bit assignments ..............................................  2-36
Figure 2-15 Debug APB ROM Address Register bit assignments ..............................................  2-38
Figure 2-16 APB-AP Identification Register bit assignments .....................................................  2-39
Figure 2-17 APB-Mux block diagram ..........................................................................................  2-41
Figure 2-18 APB-Mux integrated into the DAP-Lite ....................................................................  2-41
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. ix



List of Figures
Figure 2-19 APB-Mux domains ..................................................................................................  2-44
Figure 2-20 APB-Mux power domain separation .......................................................................  2-45
Figure 2-21 Debug trace with a single core ...............................................................................  2-51
x Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Preface

This preface introduces the CoreSight DAP-Lite Technical Reference Manual. It 
contains the following sections:

• About this book on page xii

• Feedback on page xvi.
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. xi



Preface 
About this book

This is the Technical Reference Manual (TRM) for the CoreSight Debug Access Port 
Lite (DAP-Lite).

Product revision status

The rnpn identifier indicates the revision status of the product described in this book, 
where:

rn Identifies the major revision of the product.

pn Identifies the minor revision or modification status of the product.

Intended audience

This book is written for the following target audience:

• Hardware and software engineers who want to incorporate a DAP-Lite 
component into their design and perform debug functions within an ASIC.

• Software engineers writing tools to use the DAP-Lite.

This manual assumes that readers are familiar with AMBA bus design and JTAG 
methodology.

Using this book

This book is organized into the following chapters:

Chapter 1 Introduction 

Read this chapter for a high-level view of the DAP-Lite and a description 
of its features.

Chapter 2 Functional Description 

Read this chapter for a description of the major components of the 
DAP-Lite and how they operate.

Chapter 3 Programmer’s Model 

Read this chapter for description of the DAP-Lite registers.

Appendix A DAP-Lite Ports 

Read this appendix for a description of the DAP-Lite input and output 
signals.
xii Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Preface 
Appendix B Revisions 

Read this appendix for a description of the changes specific to this issue 
of the book.

Glossary Read the Glossary for definitions of terms used in this book.

Conventions

Conventions that this book can use are described in:

• Typographical

• Timing diagrams

• Signals on page xiv.

Typographical

The typographical conventions are:

italic  Highlights important notes, introduces special terminology, 
denotes internal cross-references, and citations.

bold  Highlights interface elements, such as menu names. Denotes 
signal names. Also used for terms in descriptive lists, where 
appropriate.

monospace Denotes text that you can enter at the keyboard, such as 
commands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. You 
can enter the underlined text instead of the full command or option 
name.

monospace italic Denotes arguments to monospace text where the argument is to be 
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

 < and > Enclose replaceable terms for assembler syntax where they appear 
in code or code fragments. For example:

MRC p15, 0 <Rd>, <CRn>, <CRm>, <Opcode_2>

Timing diagrams

The figure named Key to timing diagram conventions on page xiv explains the 
components used in timing diagrams. Variations, when they occur, have clear labels. 
You must not assume any timing information that is not explicit in the diagrams.
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. xiii



Preface 
Shaded bus and signal areas are undefined, so the bus or signal can assume any value 
within the shaded area at that time. The actual level is unimportant and does not affect 
normal operation.

Key to timing diagram conventions

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is 
active-HIGH or active-LOW. Asserted means:

• HIGH for active-HIGH signals

• LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

Prefix A Denotes global Advanced eXtensible Interface (AXI) signals.

Prefix AR Denotes AXI read address channel signals.

Prefix AW Denotes AXI write address channel signals.

Prefix B Denotes AXI write response channel signals.

Prefix C Denotes AXI low-power interface signals.

Prefix H Denotes Advanced High-performance Bus (AHB) signals.

Prefix P Denotes Advanced Peripheral Bus (APB) signals.

Prefix R Denotes AXI read data channel signals.

Prefix W Denotes AXI write data channel signals.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus
xiv Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Preface 
Further reading

This section lists publications by ARM and by third parties.

See http://infocenter.arm.com/ for access to ARM documentation.

ARM publications

This book contains information that is specific to this product. See the following 
documents for other relevant information:

• CoreSight System Design Guide, ARM DGI 0012

• CoreSight Architecture Specification, ARM IHI 0029

• CoreSight Components Technical Reference Manual, ARM DDI 0314

• CoreSight Components Implementation Guide, ARM DII 0143

• AMBA® 3 APB Protocol, ARM IHI 0024

• ARM Debug Interface v5 Architecture Specification, ARM IHI 0031

• RealView ICE User Guide, ARM DUI 0155.
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. xv



Preface 
Feedback

ARM welcomes feedback on this product and its documentation.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and 
give:

• the product name

• a concise explanation.

Feedback on this book

If you have any comments on this book, send an e-mail to errata@arm.com. Give:

• the title

• the number

• the relevant page number(s) to which your comments apply

• a concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.
xvi Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Chapter 1 
Introduction

This chapter introduces the CoreSight DAP-Lite. It contains the following sections:

• About the DAP-Lite on page 1-2

• DAP-Lite structure on page 1-3

• DAP-Lite control flow on page 1-5

• DAP-Lite block summary on page 1-6.
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 1-1



Introduction 
1.1 About the DAP-Lite

The Debug Access Port (DAP) is a implementation of an ARM Debug Interface 
version 5 (ADIv5) comprising a number of components supplied in a single 
configuration. All the supplied components fit into the various architectural 
components for Debug Ports (DPs), which are used to access the DAP from an external 
debugger and Access Ports (APs), to access on-chip system resources.

The debug port and access ports together are referred to as the DAP.

The DAP-Lite contains the following components:

• Serial Wire JTAG Debug Port (SWJ-DP)

• Advanced Peripheral Bus Access Port (APB-AP)

• Advanced Peripheral Bus Multiplexor (APB-Mux)

• Read Only Memory (ROM) table.

Note
 The DAP-Lite is a version of the DAP supplied with the CoreSight Design Kit, with 
fewer features. It does not contain a JTAG Access Port or an AHB Access Port, or any 
other access ports to directly access the system bus. For more information on the 
additional features and functionality provided by the DAP, see the CoreSight 
Components Technical Reference Manual.
1-2 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Introduction 
1.2 DAP-Lite structure

Figure 1-1 shows the structure of the DAP-Lite.

Figure 1-1 DAP-Lite structure

The DAP-Lite comprises the following interface blocks:

• External debug access using the Serial Wire JTAG Debug Port (SWJ-DP). The 
SWJ-DP enables selection of either:

— external serial wire access using the Serial Wire Debug Port (SW-DP)

— external JTAG access using the JTAG Debug Port (JTAG-DP).

• Debug access using the APB-AP.

• An APB multiplexor enables system access to CoreSight components connected 
to the Debug APB.

• The ROM table provides a list of memory locations of CoreSight components 
connected to the Debug APB. This is visible from both tools and system access. 
The ROM table indicates the position of all CoreSight components in a system 
and assists in topology detection. See the CoreSight Architecture Specification for 
more information on topology detection. For more information about the ROM 
Table, see ROM table on page 2-46.

The debug port supplied with the DAP-Lite is the SWJ-DP. This is a combined debug 
port which can communicate in either JTAG or Serial Wire protocols as described in the 
ARM Debug Interface v5 Architecture Specification. It contains two debug ports, the 
SW-DP and the JTAG-DP that you can select through an interface sequence to move 
between debug port interfaces.

SWJ-DP

Decoder

Interface Access 
control

APB 
master

APB 
Mux

ROM 
table

SWJ

Debug power on request
System power on request

Debug reset request

DAPSEL

Internal bus 
multiplexing

DAPSEL0 APB-AP

Debug
APB

DAP-Lite

System access to debug AP

DAPCLK
DBGSWENABLE

DEVICEEN
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 1-3



Introduction 
The access port supplied with the DAP-Lite is the APB-AP. The APB-AP provides an 
APB master in AMBA v3.0 for access to the Debug APB bus. This is compliant with 
the MEM-AP with a fixed transfer size of 32-bits.

The DAP-Lite blocks are described in more detail in:

• About the Debug Port on page 2-2

• APB-AP on page 2-32

• APB-Mux on page 2-41

• ROM table on page 2-46.
1-4 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Introduction 
1.3 DAP-Lite control flow

The DAP-Lite, as a whole, acts as a component to translate data transfers from one type 
of interface, the external JTAG or Serial Wire link from tools, to different internal 
transactions. The debug port receives JTAG or Serial Wire transfers but controls the 
APB-AP through a standard bus interface. The APB-AP can only access the Debug 
APB but control is also possible from the AHB Matrix, through the APB-Mux, resulting 
in control and access of various CoreSight components.

Figure 1-2 shows the flow of control for the DAP-Lite when used with an off-chip 
debugging unit such as RealView ICE. 

Figure 1-2 DAP-Lite control flow

The external hardware tools, for example RealView, directly communicate with the 
SWJ-DP in the DAP-Lite and perform a series of operations to the debug port. Some of 
these accesses result in operations being performed on the DAP-Lite internal bus.

The DAP-Lite internal bus implements memory mapped accesses to the components 
that are connected using the parallel address buses for read and write data. The debug 
port, SWJ-DP, is the bus master that initiates transactions on the DAP-Lite internal bus 
in response to some of the transactions that are received over the debug interface. Debug 
interface transfers are memory mapped to registers in the DAP-Lite, both the bus master 
(debug port) and the slaves (access ports) contain registers. This DAP-Lite memory map 
is independent of the memory maps that exist within the target system.

Some of the registers in the access ports can translate interactions into transfers on the 
interconnects that they are connected to. The APB-AP can translate register interactions 
into transfers on the memory structure to which it is connected, the Debug APB in this 
case.

RealView

SWJ-DP APB-AP

System 
AHB matrix

DAP-Lite 
internal bus APB-MuxAPB

APB

Debug APB
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 1-5



Introduction 
1.4 DAP-Lite block summary

Table 1-1 shows the main DAP-Lite blocks.

Note
 See the Release Notes for a list of the blocks supplied with the version of the product 
you have received.

Table 1-1 DAP-Lite block summary

Block name Description
Block 
version

Block 
revision

DAPAPBAP APB Access Port r0p1 1

DAPAPBMUX APB Multiplexor r0p1 -

DAPROM ROM Table r0p0 -

DAPSWJDP Serial Wire and JTAG Debug Port:

• DAPSWDP

• DAPJTAGDP

r0p2

r0p2

r0p4

-

2

4

1-6 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Chapter 2 
Functional Description

This chapter describes the major components of the CoreSight DAP-Lite, and how they 
operate. It contains the following sections:

• About the Debug Port on page 2-2

• SWJ-DP on page 2-3

• JTAG-DP on page 2-11

• SW-DP on page 2-13

• Common debug port features and registers on page 2-19

• Access ports on page 2-31

• APB-AP on page 2-32

• APB-Mux on page 2-41

• ROM table on page 2-46

• Authentication requirements on page 2-49

• Clocks and resets on page 2-50

• Connections to debug components and system interfaces on page 2-51.
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-1



Functional Description 
2.1 About the Debug Port

The debug port is the host tools interface to access the DAP-Lite. This interface controls 
any access ports provided within the DAP-Lite. The DAP-Lite supports a combined 
debug port which includes both JTAG and Serial Wire Debug (SWD), with a mechanism 
that supports switching between them:

• The JTAG-DP is based on the IEEE 1149.1 Test Access Port (TAP) and Boundary 
Scan Architecture, widely referred to as JTAG, and provides a JTAG interface to 
the DAP. For more information, see JTAG-DP on page 2-11,

• The SW-DP provides a two-pin (clock + data) interface to the DAP-Lite. For more 
information, see SW-DP on page 2-13.

The SWJ-DP provides the auto-detect logic that selects between JTAG and SWD. This 
enables the JTAG-DP and SW-DP to share the same pins. For more information, see 
SWJ-DP on page 2-3.

Note
 Only one debug port can be used at once, and switching between the two debug ports 
must only be performed when neither debug port is in use.
2-2 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Functional Description 
2.2 SWJ-DP

The SWJ-DP is a combined JTAG-DP and SW-DP that enables you to connect either a 
Serial Wire Debug (SWD) or JTAG probe to a target. It is the standard CoreSight debug 
port, and enables access either to the JTAG-DP or SW-DP blocks. To make efficient use 
of package pins, serial wire shares, or overlays, the JTAG pins use an autodetect 
mechanism that switches between JTAG-DP and SW-DP depending on which probe is 
connected. A special sequence on the SWDIOTMS pin is used to switch between 
JTAG-DP and SW-DP. When the switching sequence has been transmitted to the 
SWJ-DP, it behaves as a dedicated JTAG-DP or SW-DP depending upon which 
sequence had been performed.

Note
 For more information about the programming capabilities and features of the SWJ-DP, 
see JTAG-DP on page 2-11 and SW-DP on page 2-13.

Figure 2-1 on page 2-4 shows the external connections to the SWJ-DP.

The SWJ-DP is described in more detail in:

• Structure of the SWJ-DP on page 2-4

• Operation of the SWJ-DP on page 2-4

• JTAG and SWD interface on page 2-5

• Clock, reset and power domain support on page 2-6

• SWD and JTAG selection mechanism on page 2-7.
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-3



Functional Description 
Figure 2-1 SWJ-DP external connections

2.2.1 Structure of the SWJ-DP

The SWJ-DP consists of a wrapper around the JTAG-DP and SW-DP. It selects JTAG 
or SWD as the connection mechanism and enables either JTAG-DP or SW-DP as the 
interface to the DAP.

2.2.2 Operation of the SWJ-DP

SWJ-DP enables you to design an Application Specific Integrated Circuit (ASIC) that 
you can use in systems that require either a JTAG interface or a SWD interface. There 
is a trade-off between the number of pins used and compatibility with existing hardware 
and test equipment. There are several scenarios where you must use a JTAG debug 
interface. These enable:

• inclusion in an existing scan chain, usually on-chip TAPs used for test or other 
purposes.

• the device to be cascaded with legacy devices that use JTAG for debug

SWD/JTAG 
select

TDO
TDI

nTRST

TCK

TMS
nPOTRST

JTAG-DP

DBGDI

DBGDO

DBGDOEN

DBGCLK

DBGRESETn

SW-DP

From 
power-on 
reset

nPOTRST

SWCLKTCK

TRACESWO

TDO

TDI

SWDIOTMS

nTRST

TDO
TDI

nTRST

SWDITMS

SWDO

SWDOEN

SWCLKTCK

SWJ-DP
2-4 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Functional Description 
• use of existing debug hardware with the corresponding test TAPs, for example in 
Automatic Test Equipment (ATE).

You can connect an ASIC fitted with SWJ-DP support to legacy JTAG equipment 
without making any changes. If an SWD tool is available, only two pins are required, 
instead of the usual four used for JTAG. You can therefore use the other two pins for 
something else.

You can only use these two pins if there is no conflict with their use in JTAG mode. To 
support use of SWJ-DP in a scan chain with other JTAG devices, the default state after 
reset must be to use these pins for their JTAG function. If the direction of the alternative 
function is compatible with being driven by a JTAG debug device, the transition to a 
shift state can be used to transition from the alternative function to JTAG mode. You 
cannot use the other function while the ASIC is in JTAG debug mode.

The switching scheme is arranged so that, provided there is no conflict on the TDI and 
TDO pins, a JTAG debugger can connect by sending a specific sequence. The 
connection sequence used for SWD is safe when applied to the JTAG interface, even if 
hot-plugged, enabling the debugger to continually retry its access sequence. A sequence 
with TMS=1 ensures that JTAG-DP, SW-DP, and the watcher circuit are in a known 
reset state. The pattern used to select SWD has no effect on JTAG targets. SWJ-DP is 
compatible with a free-running TCK, or a gated clock supplied by external tools.

2.2.3 JTAG and SWD interface

The external JTAG interface has four mandatory pins, TCK, TMS, TDI, and TDO, and 
an optional reset, nTRST. JTAG-DP and SW-DP also require a separate power-on reset, 
nPOTRST.

The external SWD interface requires two pins:

• a bidirectional SWDIO signal

• a clock, SWCLK, which can be input or output from the device.

The block level interface has two pins for data plus an output enable that must be used 
to drive a bidirectional pad for the external interface, and clock and reset signals. To 
enable sharing of the connector for either JTAG or SWD, connections must be made 
external to the SWJ-DP block, as shown in Figure 2-3 on page 2-8. In particular, TMS 
must be a bidirectional pin to support the bidirectional SWDIO pin in SWD mode. 
When SWD mode is used, the TDO pin is expected to be re-used for Serial Wire Output 
(SWO). You can use the TDI pin as an alternative input function.

Note
 If you require SWO functionality in JTAG mode, you must have as a dedicated pin.
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-5



Functional Description 
2.2.4 Clock, reset and power domain support

In the SWCLKTCK clock domain, there are registers to enable power control for the 
on-chip debug infrastructure. This enables the majority of the debug logic, such as ETM 
and ETB, to be powered down by default, and only the serial engine has to be clocked. 
A debug session then starts by powering up the remainder of the debug components. In 
SWJ-DP, either JTAG-DP or SW-DP can make power-up or reset requests but only if 
they are the selected device. Even in a system which does not provide a clock and reset 
control interface to the DAP, it is necessary to connect these signals so it appears that a 
clock and reset controller is present. This permits correct handshaking of the request 
and acknowledge signals.

To help provide separate power domains, it is possible to partition the RTL of SWJ-DP 
to enable an always on domain and debug domain as described in the ARM Debug 
Interface v5 Architecture Specification. Figure 2-2 shows the RTL structure to support 
power domain structure.

Figure 2-2 SWJ-DP signal clamping

DAPSwDpProtocol

DAPJtagDpProtocol

DAPSwjwatcher DAPDpIMux

DAPSwDpSync

DAPDpApbSync

DAPDpApbIfClamp

To/from JTAG/SW 
interface

To/from DAP 
internal busnCDBGPWRDN

DAPSwDpApbIf
2-6 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Functional Description 
2.2.5 SWD and JTAG selection mechanism

SWJ-DP enables either an SWD or JTAG protocol to be used on the debug port. To do 
this, it implements a watcher circuit that detects a specific 16-bit selection sequence on 
the SWDIOTMS pin:

• A 16-bit sequence is used to switch from JTAG to SWD operation

• Another 16-bit sequence is used to switch from SWD to JTAG.

The switcher defaults to JTAG operation on power-on reset, therefore the JTAG 
protocol can be used from reset without sending a selection sequence. Switching from 
one protocol to the other can only occur when the selected interface is in its reset state. 
JTAG must be in its Test-Logic-Reset (TLR) state and SWD must be in line-reset.

The SWJ-DP contains a mode status output, JTAGNSW, that is HIGH when the 
SWJ-DP is in JTAG mode and LOW when in SWD mode. This signal can be used to:

• disable other TAP controllers when the SWJ-DP is in SWD mode, for example by 
disabling TCK or forcing TMS HIGH

• multiplex the Serial Wire output, TRACESWO, on to another pin such as TDO 
when in SWD mode.

Another status output, JTAGTOP, indicates the state of the JTAG-DP TAP controller. 
These states are:

• Test-Logic-Reset

• Run-Test/Idle

• Select-DR-Scan

• Select-IR-Scan.

This signal can be used with JTAGNSW to control multiplexers so that, for example, 
TDO and TDI can be reused as General Purpose Input/Output (GPIO) signals when 
the device is in SWD mode.

The watcher block puts itself to sleep when it has finished tracking a specific sequence 
and only wakes up again when it detects the next reset condition. Figure 2-3 on page 2-8 
is a simplified state diagram that shows how the watcher transitions between sleeping, 
detecting, and selection states.
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-7



Functional Description 
Figure 2-3 SWD and JTAG select state diagram

SWJ-DP switching sequences

The SWJ-DP switching sequences are described in:

• JTAG to SWD switching

• SWD to JTAG switching on page 2-9.

JTAG to SWD switching

To switch SWJ-DP from JTAG to SWD operation:

1. Send more than 50 SWCLKTCK cycles with SWDIOTMS=1. This ensures that 
both SWD and JTAG are in their reset states

JTAG-Sel 
sleeping

JTAG-Sel 
TLR

JTAG-Sel 
detecting SWD-Sel 

sleeping

SWD-Sel 
line reset

SWD-Sel 
detecting

JTAG-DP
in TLR

Sequence
mismatch

Sequence
completed

Sequence
completed

TMS=0

Sequence
mismatch

SW-DP in
line reset

JTAG-DP
performing

transactions

TMS=1

Valid JTAG_SEL
sequence 15 cycles

SW-DP
performing

transactions

Valid SWD_SEL
sequence 15 cycles

TMS=1

TMS=0

Reset (nPOTRST)
2-8 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Functional Description 
2. Send the 16-bit JTAG-to-SWD select sequence on SWDIOTMS

3. Send more than 50 SWCLKTCK cycles with SWDIOTMS=1. This ensures that 
if SWJ-DP was already in SWD mode, before sending the select sequence, the 
SWD goes to line reset.

4. Perform a READID to validate that SWJ-DP has switched to SWD operation.

The 16-bit JTAG-to-SWD select sequence is defined to be 0b0111100111100111, MSB 
first. This can be represented as 16'h79E7 if transmitted MSB first or 16'hE79E if 
transmitted LSB first.

This sequence has been chosen to ensure that the SWJ-DP switches to using SWD 
whether it was previously expecting JTAG or SWD. As long as the 50 SWDIOTMS=1 
sequence is sent first, the JTAG-to-SWD select sequence is benign to SW-DP, and is 
also benign to SWD and JTAG protocols used in the SWJ-DP, and any other TAP 
controllers that might be connected to SWDIOTMS.

SWD to JTAG switching

To switch SWJ-DP from SWD to JTAG operation:

1. Send more than 50 SWCLKTCK cycles with SWDIOTMS=1. This ensures that 
both SWD and JTAG are in their reset states.

2. Send the 16-bit SWD-to-JTAG select sequence on SWDIOTMS.

3. Send at least five SWCLKTCK cycles with SWDIOTMS=1. This ensures that 
if SWJ-DP was already in JTAG mode before sending the select sequence, it goes 
into the TLR state.

4. Set the JTAG-DP IR to READID and shift out the DR to read the ID.

The 16-bit JTAG-to-SWD select sequence is defined to be 0b0011110011100111, MSB 
first. This can be represented as 16'h3CE7 if transmitted MSB first or 16'hE73C if 
transmitted LSB first.

This sequence has been chosen to ensure that the SWJ-DP switches to using JTAG 
whether it was previously expecting JTAG or SWD. If the SWDIOTMS=1 sequence is 
sent first, the SWD-to-JTAG select sequence is benign to SW-DP, and is also benign to 
SWD and JTAG protocols used in the SWJ-DP, and any other TAP controllers that 
might be connected to SWDIOTMS.
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-9



Functional Description 
Restriction on switching

It is recommended that when a system is powered up, a debug connection is made, and 
the mode is selected, either SWD or JTAG, that the system remains in this mode 
throughout the debug session. Switching between modes must not be attempted while 
any component of the DAP is active.

If you attempt to switch between modes while any component of the DAP is active, 
there can be unpredictable results. A power-on reset cycle might be required to reset the 
DAP before switching can be retried.
2-10 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Functional Description 
2.3 JTAG-DP

The JTAG-DP supplied with the DAP-Lite is an implementation of the JTAG-DP 
specified in the ARM Debug Interface v5 Architecture Specification, which also 
contains a detailed explanation of its programmer’s model, capabilities and features.

JTAG-DP contains a debug port state machine (JTAG) that controls the JTAG-DP 
operation, including controlling the scan chain interface that provides the external 
physical interface to the JTAG-DP. It is based closely on the JTAG TAP State Machine, 
see IEEE Std 1149.1-2001.

This section contains the following:

• Overview

• Implementation specific details.

2.3.1 Overview

With the JTAG-DP, IEEE 1149.1 scan chains are used to read or write register 
information. A pair of scan chain registers is used to access the main control and access 
registers within the Debug Port:

• DPACC used for Debug Port (DP) accesses.

• APACC used for Access Port (AP) accesses. An APACC access might access a 
register of a debug component of the system to which the interface is connected.

The scan chain model implemented by a JTAG-DP has the concepts of capturing the 
current value of APACC or DPACC, and of updating APACC or DPACC with a new 
value. An update might cause a read or write access to a DAP-Lite register that might 
then cause a read or write access to a debug register of a connected debug component. 
The operations available on JTAG-DP are described in the ARM Debug Interface v5 
Architecture Specification. The implemented registers present within the supplied 
JTAG-DP are described in Implementation specific details.

2.3.2 Implementation specific details

The implementation specific details are described in the following:

• Physical interface on page 2-12

• Programmer’s model on page 2-12.
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-11



Functional Description 
Physical interface

The physical interface for JTAG-DP and the relationship to the signal references in the 
ARM Debug Interface v5 Architecture Specification is given in Table 2-1. The interface 
does not include a return clock signal. RTCK and the nTRST signals are optional 
because this only relates to resetting the DBGTAP state machine which can be 
performed by transmitting 5 TCK pulses with TMS HIGH.

Programmer’s model

Table 2-2 lists all implemented registers accessible by JTAG-DP. All other IR 
instructions are implemented as BYPASS and an external TAP controller must be 
implemented in accordance with the ARM Debug Interface v5 Architecture 
Specification if more IR registers are required, for example JTAG TAP boundary scan.

For more information about these registers, their features, and how to access them, see 
the ARM Debug Interface v5 Architecture Specification. Implementation specific detail 
is described in Common debug port features and registers on page 2-19.

Table 2-1 JTAG-DP physical interface

Implementation signal 
name (JTAG-DP)

ADIv5 signal name (JTAG-DP) Direction JTAG-DP signal description

TDI DBGTDI Input Debug Data In

TDO DBGTDO Output Debug Data Out

SWCLKTCK TCK Input Debug Clock

SWDITMS DBGTMS Input Debug Mode Select

nTRST DBGTRSTn Input Debug TAP Reset

Table 2-2 JTAG-DP registers

IR instruction value JTAG-DP register DR scan width Description

b1000 ABORT 35 JTAG-DP Abort Register (ABORT)

b1010 DPACC 35 JTAG DP/AP Access Registers (DPACC/APACC)

b1011 APACC 35

b1110 IDCODE 32 JTAG Device ID Code Register (IDCODE)

b1111 BYPASS 1 JTAG Bypass Register (BYPASS)
2-12 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Functional Description 
2.4 SW-DP

This section briefly describes the Serial Wire Debug Port (SW-DP) interface. This 
implementation is taken from the ARM Debug Interface v5 Architecture Specification 
and operates with a synchronous serial interface. This uses a single bidirectional data 
signal, and a clock signal.

2.4.1 Overview

The SW-DP provides a low pin count bi-directional serial connection to the DAP with 
a reference clock signal for synchronous operation.

Communications with the SW-DP use a three-phase protocol:

• A host-to-target packet request.

• A target-to-host acknowledge response.

• A data transfer phase, if required. This can be target-to-host or host-to-target, 
depending on the request made in the first phase.

A packet request from a debugger indicates whether the required access is to a DP 
register (DPACC) or to an AP register (APACC), and includes a two-bit register address. 
The protocol is described in detail in the ARM Debug Interface v5 Architecture 
Specification.

2.4.2 Implementation specific details

This section contains the following:

• Clocking

• Overview of debug interface on page 2-14.

Clocking

The SW-DP clock, SWCLKTCK, can be asynchronous to the DAPCLK. 
SWCLKTCK can be stopped when the debug port is idle.

The host must continue to clock the interface for a number of cycles after the data phase 
of any data transfer. This ensures that the transfer can be clocked through the SW-DP. 
This means that after the data phase of any transfer the host must do one of the 
following:

• immediately start a new SW-DP operation

• continue to clock the SW-DP serial interface until the host starts a new SW-DP 
operation
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-13



Functional Description 
• after clocking out the data parity bit, continue to clock the SW-DP serial interface 
until it has clocked out at least 8 more clock rising edges, before stopping the 
clock.

Overview of debug interface

This section gives an overview of the physical interface used by the SW-DP.

Line interface

The SW-DP uses a serial wire for both host and target sourced signals. The host 
emulator drives the protocol timing - only the host emulator generates packet headers.

The SW-DP operates in synchronous mode, and requires a clock pin and a data pin.

Synchronous mode uses a clock reference signal, which can be sourced from an on-chip 
source and exported, or provided by the host device. This clock is then used by the host 
as a reference for generation and sampling of data so that the target is not required to 
perform any oversampling.

Both the target and host are capable of driving the bus HIGH and LOW, or tristating it. 
The ports must be able to tolerate short periods of contention to allow for loss of 
synchronization.

Line pullup

Both the host and target are able to drive the line HIGH or LOW, so it is important to 
ensure that contention does not occur by providing undriven time slots as part of the 
handover. So that the line can be assumed to be in a known state when neither is driving 
the line, a 100kΩ pullup is required at the target, but this can only be relied on to 
maintain the state of the wire. If the wire is driven LOW and released, the pullup resistor 
eventually brings the line to the HIGH state, but this takes many bit periods.

The pullup is intended to prevent false detection of signals when no host device is 
connected. It must be of a high value to reduce IDLE state current consumption from 
the target when the host actively pulls down the line.

Note
 Whenever the line is driven LOW, this results in a small current drain from the target. If 
the interface is left connected for extended periods when the target has to use a low 
power mode, the line must be held HIGH, or reset, by the host until the interface must 
be activated.
2-14 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Functional Description 
Line turn-round

To avoid contention, a turnaround period is required when the device driving the wire 
changes.

Idle and reset

Between transfers, the host must either drive the line LOW to the IDLE state, or 
continue immediately with the start bit of a new transfer. The host is also free to leave 
the line HIGH, either driven or tristated, after a packet. This reduces the static current 
drain, but if this approach is used with a free running clock, a minimum of 50 clock 
cycles must be used, followed by a READ-ID as a new re-connection sequence.

There is no explicit reset signal for the protocol. A reset is detected by either host or 
target when the expected protocol is not observed. It is important that both ends of the 
link become reset before the protocol can be restarted with a reconnection sequence. 
Re-synchronization following the detection of protocol errors or after reset is achieved 
by providing 50 clock cycles with the line HIGH, or tristate, followed by a read ID 
request.

If the SW-DP detects that it has lost synchronization, for example if no stop bit is seen 
when expected, it leaves the line undriven and waits for the host to either re-try with a 
new header after a minimum of one cycle with the line LOW, or signals a reset by not 
driving the line itself. If the SW-DP detects two bad data sequences in a row, it locks out 
until a reset sequence of 50 clock cycles with DBGDI HIGH is seen.

If the host does not see an expected response from SW-DP, it must allow time for 
SW-DP to return a data payload. The host can then retry with a read to the SW-DP ID 
code register. If this is unsuccessful, the host must attempt a reset.

2.4.3 Transfer timings

This section describes the interaction between the timing of transactions on the serial 
wire interface, and the DAP internal bus transfers. It shows when the target responds 
with a WAIT acknowledgement.

Figure 2-4 on page 2-16 shows the effect of signalling ACK = WAIT on the length of 
the packet.
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-15



Functional Description 
Figure 2-4 SW-DP acknowledgement timing

An access port access results in the generation of a transfer on the DAP internal bus. 
These transfers have an address phase and a data phase. The data phase can be extended 
by the access if it requires extra time to process the transaction, for example, if it has to 
perform an AHB access to the system bus to read data.

Table 2-3 shows the terms used in Figure 2-5 on page 2-17 to Figure 2-7 on page 2-18.

Figure 2-5 on page 2-17 shows a sequence of write transfers. It shows that a single new 
transfer, WD[1], can be accepted by the serial engine, while a previous write transfer, 
WD[0], is completing. Any subsequent transfer must be stalled until the first transfer 
completes.

Write W 00 P O W 00 P O0 1 0Z Z Z 01 0 Z WDATA[31:0] P
13 bits for rejected packet 46 bits for accepted packet

Read R 00 P O R 00 P O0 1 0Z Z Z 01 0 ZRDATA[31:0] P

ACK=010: Wait ACK=100: Accept

ST DP ST DP DP

ST AP

P1

P1 ST AP

P1

Table 2-3 Terms used in SW-DP timing

Term Description

W.APACC Write a DAP access port register.

R.APACC Read a DAP access port register.

xxPACC Read or write, to debug port or access port register.

WD[0] First write packet data.

WD[-1] Previous write packet data. A transaction that happened before this timeframe.

WD[1] Second write packet data.

RD[0] First read packet data.

RD[1] Second read packet data.
2-16 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Functional Description 

 

Figure 2-5 SW-DP to DAP bus timing for write

Figure 2-6 shows a sequence of read transfers. It shows that the payload for an access 
port read transfer provides the data for the previous read request. A read transfer only 
stalls if the previous transfer has not completed, therefore the first read transfer returns 
undefined data. It is still necessary to return data to ensure that the protocol timing 
remains predictable.

Figure 2-6 SW-DP to DAP bus timing for read

Figure 2-7 on page 2-18 shows a sequence of transfers separated by IDLE periods. It 
shows that the wire is always handed back to the host after any transfer.

T OK T WD[0] T OK T WD[1] xxPACC T T T OK TSW

WD[-1] WD[0] WD[1]

Access [0] Access[1]

Access[0] accepted 
and buffered

Access[1] accepted 
and buffered

Access[2] rejected
until Access[1] 

completes

Access[0] presented to DAP internal bus

A[0] A[1]

WD[0] WD[0]

Buffer empty before 
end of header

DAP 
bus

DAP 
READY

HADDR

HWDATA

HREADY

W.APACC W.APACC Wait xxPACC

T OK RD[-1] T OK RD[0] xxPACC T T xxPACC T OK TSW

RD[0] RD[1]

A[0] A[1]

RD[0] RD[1]

DAP 
bus

DAP 
READY

HADDR

HWDATA

HREADY

T

RD[0] RD[0]DP read 
buffer

R.APACC[0] R.APACC[1] Wait
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-17



Functional Description 
Figure 2-7 SW-DP idle timing

After the last bit in a packet, the line can be LOW, or Idle, for any period longer than a 
single bit, to enable the Start bit to be detected for back-to-back transactions.

T OK T WDATA T OK RDATA T xxPACC T T

W.APACC R.APACC Wait
2-18 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Functional Description 
2.5 Common debug port features and registers

This section describes specific details of features and registers that are present within 
this implementation of SW-DP and JTAG-DP as part of the SWJ-DP. For all the features 
and registers present within SW-DP and JTAG-DP, see the ARM Debug Interface v5 
Architecture Specification. This section contains the following implementation specific 
details:

• Features overview

• Example pushed operations

• Debug Port registers overview on page 2-21

• Implementation specific registers on page 2-21

2.5.1 Features overview

Both the SW-DP and JTAG-DP views within the SWJ-DP contain the same features 
described in the ARM Debug Interface v5 Architecture Specification. Their features 
include:

• Sticky flags and debug port error responses as a result of either a read and write 
error response from the system or because of an overrun detection 
(STICKYORUN). 

• Pushed compare and pushed verify to enable more optimized control from a 
debugger by performing a set of write transactions and enabling any comparison 
operation to be done within the debug port. See Example pushed operations for 
specific examples with the DAP-Lite.

• Transaction counter to recover to a point within a repeated operation (typically in 
combination with a pushed function and auto-incrementing in an access port).

• System and debug power and debug reset control. This is to enable an external 
debugger to connect to a potentially turned-off system and power up as much as 
required to get a basic level of debug access with minimal understanding of the 
system.

These features are described in more detail in the ARM Debug Interface v5 Architecture 
Specification.

2.5.2 Example pushed operations

These are two examples using this specific implementation of the ADIv5. All register 
and feature references are related to those described in their respective chapters and the 
ARM Debug Interface v5 Architecture Specification.
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-19



Functional Description 
This section contains two examples:

• Example use of pushed verify operation on an APB-AP

• Example use of pushed find operation on a APB-AP.

Example use of pushed verify operation on an APB-AP

You can use pushed verify to verify the contents of system memory.

• Make sure that the APB-AP Control/Status Word (CSW) is set up to increment 
the TAR after each access. See APB-AP Control/Status Word Register, CSW, 0x00 
on page 2-34.

• Write to the TAR to indicate the start address of the Debug Register region that is 
to be verified, see APB-AP Transfer Address Register, TAR, 0x04 on page 2-36.

• Write a series of expected values as access port transactions. On each write 
transaction, the debug port issues an access port read access, compares the result 
against the value supplied in the access port write transaction, and sets the 
STICKYCMP bit in the CRL/STAT Register if the values do not match. See 
APB-AP Control/Status Word Register, CSW, 0x00 on page 2-34.

The TAR is incremented on each transaction.

In this way, the series of values supplied is compared against the contents of the access 
port locations, and STICKYCMP set if they do not match.

Example use of pushed find operation on a APB-AP

You can use pushed find to search system memory for a particular word. If you use 
pushed find with byte lane masking you can search for one or more bytes.

• Make sure that the APB-AP Control/Status Word (CSW) is set up to increment 
the TAR after each access. See APB-AP Control/Status Word Register, CSW, 0x00 
on page 2-34.

• Write to the TAR to indicate the start address of the Debug Register region that is 
to be searched. See APB-AP Transfer Address Register, TAR, 0x04 on page 2-36.

• Write the value to be searched for as an AP write transaction. The debug port 
repeatedly reads the location indicated by the TAR. On each debug port read:

— The value returned is compared with the value supplied in the access port 
write transaction. If they match, the STICKYCMP flag is set.

— The TAR is incremented.

This continues until STICKYCMP is set, or ABORT is used to terminate the 
search.
2-20 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Functional Description 
You could also use pushed find without address incrementing to poll a single location, 
for example to test for a flag being set on completion of an operation.

2.5.3 Debug Port registers overview

Table 2-4 summarizes the DP registers, and lists which registers are implemented on a 
JTAG-DP and which are implemented on a SW-DP. 

2.5.4 Implementation specific registers

This section describes the implementation specific registers.

Identification Code Register, IDCODE

The Identification Code Register is always present on all debug port implementations. 
It provides identification information about the ARM Debug Interface.

JTAG-DP is accessed using its own scan chain.

Table 2-4 Summary of Debug Port registers

Name Description JTAG-DP SW-DP For description see section

ABORT AP Abort Register Yes Yes -

IDCODE ID Code Register Yes Yes Identification Code Register, IDCODE

CTRL/STAT DP Control/Status Register Yes Yes Control/Status Register, CTRL/STAT on 
page 2-23

SELECT Select Register Yes Yes AP Select Register, SELECT on page 2-25

RDBUFF Read Buffer Yes Yes Read Buffer, RDBUFF on page 2-27

WCR Wire Control Register No Yes Wire Control Register, WCR (SW-DP only) on 
page 2-28

RESEND Read Resend Register No Yes Read Resend Register, RESEND (SW-DP only) 
on page 2-30

ROUTESEL Reserved No Optional See footnotea

a. The specification of the SW-DP provides for an optional ROUTESEL register. However this is not implemented in this release 
of the SW-DP.
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-21



Functional Description 
SW-DP is at address 0b00 on read operations when the APnDP bit =1. Access to the 
Identification Code Register is not affected by the value of the CTRLSEL bit in the 
Select Register. The Identification Code Register is:

• a read-only register

• always accessible.

Figure 2-8 shows the Identification Code Register bit assignments.

Figure 2-8 Identification Code Register bit assignments

Table 2-5 shows the Identification Code Register bit assignments.

1Version

31 28 27 12 11 1 0

PARTNO
Part number defined by manufacturer 0 1 0 0 0 1 1 1 0 1 1JTAG-DP

or SW-DP

MANUFACTURER
(ARM default value)

Table 2-5 Identification Code Register bit assignments

Bits Function Description

[31:28] Version Version code:

JTAG-DP 0x4

SW-DP 0x2

[27:12] PARTNO Part Number for the debug port. This value is provided by the designer of the Debug 
Port and must not be changed. Current ARM-designed debug ports have the following 
PARTNO values:

JTAG-DP 0xBA00

SW-DP 0xBA01

[11:1] MANUFACTURER JEDEC Manufacturer ID, an 11-bit JEDEC code that identifies the designer of the 
device. See JEDEC Manufacturer ID on page 2-23. The ARM value for this field, 
shown in Figure 2-8, is 0x23B. This value must not be changed.

[0] - Always 0b1.
2-22 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Functional Description 
JEDEC Manufacturer ID

This code is also described as the JEP-106 manufacturer identification code, and can be 
subdivided into two fields, as shown in Table 2-6. JDEC codes are assigned by the 
JEDEC Solid State Technology Association, see JEP106M, Standard Manufacture's 
Identification Code.

Control/Status Register, CTRL/STAT

The Control/Status Register is always present on all debug port implementations. It 
provides control of the debug port, and status information about the debug port. 
JTAG-DP It is at address 0x4 when the Instruction Register (IR) contains DPACC. 
SW-DP is at address 0b01 on read and write operations when the APnDP bit =1 and the 
CTRLSEL bit in the Select Register is set to b0. For information about the CTRLSEL 
bit see AP Select Register, SELECT on page 2-25.

The Control/Status Register is a read-write register, in which some bits have different 
access rights. It is Implementation-defined whether some fields in the register are 
supported. Figure 2-9 shows the Control/Status Register bit assignments.

Figure 2-9 Control/Status Register bit assignments

Table 2-6 JEDEC JEP-106 manufacturer ID code, with ARM Limited values

JEP-106 field Bitsa

a. Field width, in bits, and the corresponding bits in the Identification Code 
Register.

ARM Limited registered value

Continuation code 4 bits, [11:8] b0100, 0x4

Identity code 7 bits, [7:1] b0111011, 0x3B

00
00

31 5 4 3 2 1 0

DAPSM-DP

SW-DP

WDATAERR
READOK

STICKYERR

TRNMODE

SW-DP only,
RAZ/SBZP for DAPSM-DP

30 29 28 27 26 25 24 23 12 11 8 7 6

TRNCNT

CSYSPWRUPACK
CSYSPWRUPREQ
CDBGPWRUPACK
CDBGPWRUPREQ

CDBGRSTACK
CDBGRSTREQ

RAZ/SBZP

MASKLANE

STICKYCMP

STICKYORUN
ORUNDETECT
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-23



Functional Description 
Table 2-7 shows the Control/Status Register bit assignments.

Table 2-7 Control/Status Register bit assignments

Bits Access Function Description

[31] RO CSYSPWRUPACK System power-up acknowledge. 

[30] R/W CSYSPWRUPREQ System power-up request.

After a reset this bit is LOW (0).

[29] RO CDBGPWRUPACK Debug power-up acknowledge. 

[28] R/W CDBGPWRUPREQ Debug power-up request.

After a reset this bit is LOW (0).

[27] RO CDBGRSTACK Debug reset acknowledge.

[26] R/W CDBGRSTREQ Debug reset request.

After a reset this bit is LOW (0).

[25:24] - - Reserved, RAZ/SBZP

[21:12] R/W TRNCNT Transaction counter.

After a reset the value of this field is Unpredictable.

[11:8] R/W MASKLANE Indicates the bytes to be masked in pushed compare and pushed verify 
operations.

After a reset the value of this field is Unpredictable.

[7] ROa WDATAERRa This bit is set to 1 if a Write Data Error occurs. It is set if:

• there is a a parity or framing error on the data phase of a write

• a write that has been accepted by the debug port is then discarded 
without being submitted to the access port.

This bit can only be cleared by writing b1 to the WDERRCLR field of the 
Abort Register.

After a power-on reset this bit is LOW (0).

[6] ROa READOKa This bit is set to 1 if the response to a previous access port or RDBUFF was 
OK. It is cleared to 0 if the response was not OK. 

This flag always indicates the response to the last access port read access.

After a power-on reset this bit is LOW (0).
2-24 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Functional Description 
AP Select Register, SELECT

The AP Select Register is always present on all debug port implementations. Its main 
purpose is to select the current access port and the active four-word register window in 
that access port. On a SW-DP, it also selects the debug port address bank.

JTAG-DP It is at address 0x8 when the Instruction Register (IR) contains DPACC, 
and is a read/write register.

SW-DP It is at address 0b10 on write operations when the APnDP bit =1, and is 
a write-only register. Access to the AP Select Register is not affected by 
the value of the CTRLSEL bit.

[5] ROb STICKYERR This bit is set to 1 if an error is returned by an access port transaction. To 
clear this bit:

On a JTAG-DP Write b1 to this bit of this register.

On a SW-DP Write b1 to the STKERRCLR field of the Abort 
Register.

After a power-on reset this bit is LOW (0).

[4] ROa STICKYCMP This bit is set to 1 when a match occurs on a pushed compare or a pushed 
verify operation. To clear this bit:

On a JTAG-DP Write b1 to this bit of this register.

On a SW-DP Write b1 to the STKCMPCLR field of the Abort 
Register.

After a power-on reset this bit is LOW (0).

[3:2] R/W TRNMODE This field sets the transfer mode for access port operations.

After a power-on reset the value of this field is Unpredictable.

[1] ROa STICKYORUN If overrun detection is enabled (see bit [0] of this register), this bit is set to 
1 when an overrun occurs. To clear this bit:

On a JTAG-DP Write b1 to this bit of this register.

On a SW-DP Write b1 to the ORUNERRCLR field of the Abort 
Register.

After a power-on reset this bit is LOW (0).

[0] R/W ORUNDETECT This bit is set to b1 to enable overrun detection.

After a reset this bit is LOW (0).

a. Implemented on SW-DP only. On a JTAG-DP this bit is Reserved, RAZ/SBZP.
b. RO on SW-DP. On a JTAG-DP, this bit can be read normally, and writing b1 to this bit clears the bit to b0.

Table 2-7 Control/Status Register bit assignments (continued)

Bits Access Function Description
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-25



Functional Description 
Figure 2-10 shows the AP Select Register bit assignments.

Figure 2-10 AP Select Register bit assignments

Table 2-8 shows the AP Select Register bit assignments.

If APSEL is set to a non-existent access port, all access port transactions return zero on 
reads and are ignored on writes.

Note
 Every ARM Debug Interface implementation must include at least one access port.

SBZ/RAZ
APSEL

31 4 3 1 0

DAPSM-DP

SW-DP

APBANKSEL

CTRLSEL, SW-DP only

24 23 8 7

Reserved
RAZ/SBZ SBZ

Table 2-8 AP Select Register bit assignments

Bits Function Description

[31:24] APSEL Selects the current access port.

0x00 - APB-AP

The reset value of this field is Unpredictable.a

[23:8] - Reserved. SBZ/RAZa.

[7:4] APBANKSEL Selects the active four-word register window on the current access port.

The reset value of this field is Unpredictable.a

[3:1] - Reserved. SBZ/RAZa.

[0]b CTRLSELb SW-DP debug port address bank select.

After a reset this field is b0. However the register is WO and you cannot read this value.

a. On a SW-DP the register is write-only, therefore you cannot read the field value.
b. SW-DP only. On a JTAG-DP this bit is Reserved, SBZ/RAZ.
2-26 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Functional Description 
Read Buffer, RDBUFF

The 32-bit Read Buffer is always present on all debug port implementations. However, 
there are significant differences in its implementation on JTAG and SW Debug Ports.

JTAG-DP It is at address 0xC when the Instruction Register (IR) contains DPACC, 
and is a Read-as-zero, Writes ignored (RAZ/WI) register.

SW-DP It is at address 0b11 on read operations when the APnDP bit =1, and is a 
read-only register. Access to the Read Buffer is not affected by the value 
of the CTRLSEL bit in the SELECT Register.

Read Buffer implementation and use on a JTAG-DP

On a JTAG-DP, the Read Buffer always reads as zero, and writes to the Read Buffer 
address are ignored.

The Read Buffer is architecturally defined to provide a debug port read operation that 
does not have any side effects. This means that a debugger can insert a debug port read 
of the Read Buffer at the end of a sequence of operations, to return the final Read Result 
and ACK values.

Read Buffer implementation and use on a SW-DP

On a SW-DP, performing a read of the Read Buffer captures data from the access port, 
presented as the result of a previous read, without initiating a new access port 
transaction. This means that reading the Read Buffer returns the result of the last access 
port read access, without generating a new AP access.

After you have read the Read Buffer, its contents are no longer valid. The result of a 
second read of the Read Buffer is Unpredictable.

If you require the value from an access port register read, that read must be followed by 
one of:

• A second access port register read. You can read the Control/Status Register 
(CSW) if you want to ensure that this second read has no side effects.

• A read of the DP Read Buffer.

This second access, to the access port or the debug port depending on which option you 
used, stalls until the result of the original access port read is available.
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-27



Functional Description 
Wire Control Register, WCR (SW-DP only)

The Wire Control Register is always present on any SW-DP implementation. Its 
purpose is to select the operating mode of the physical serial port connection to the 
SW-DP.

It is a read/write register at address 0b01 on read and write operations when the 
CTRLSEL bit in the Select Register is set to b1. For information about the CTRLSEL 
bit see AP Select Register, SELECT on page 2-25.

Note
 When the CTRLSEL bit is set to b1, to enable access to the WCR, the DP Control/Status 
Register is not accessible.

Many features of the Wire Control Register are implementation-defined.

Figure 2-11 shows the Wire Control Register bit assignments.

Figure 2-11 Wire Control Register bit assignments

Table 2-9 shows the Wire Control Register bit assignments.

SBZ/
RAZSBZ/RAZ

31 0

SW-DP
only

10 9 8 7 6 5 3 2

TURNROUND

WIREMODE
PRESCALER

Implementation-defined, see text

Table 2-9 Wire Control Register bit assignments

Bits Function Description

[31:10] - Reserved. SBZ/RAZ.

[9:8] TURNROUND Turnaround tristate period, see Turnaround tristate period, TURNROUND, bits [9:8] on 
page 2-29.

After a reset this field is b00.
2-28 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Functional Description 
Turnaround tristate period, TURNROUND, bits [9:8]

This field defines the turnaround tristate period. This turnaround period allows for pad 
delays when using a high sample clock frequency. Table 2-10 lists the allowed values 
of this field, and their meanings.

Wire operating mode, WIREMODE, bits [7:6]

This field identifies SW-DP as operating in Synchronous mode only. This field is 
required, and Table 2-11 lists the allowed values of the field, and their meanings.

[7:6] WIREMODE Identifies the operating mode for the wire connection to the debug port, see Wire operating 
mode, WIREMODE, bits [7:6].

After a reset this field is b01.

[5:3] - Reserved. SBZ/RAZ.

[2:0] PRESCALER Reserved. SBZ/RAZ.

Table 2-9 Wire Control Register bit assignments (continued)

Bits Function Description

Table 2-10 Turnaround tristate period field bit definitions

TURNROUNDa

a. Bits [9:8] of the WCR Register.

Turnaround tristate period

b00 1 sample period

b01 2 sample periods

b10 3 sample periods

b11 4 sample periods

Table 2-11 Wire operating mode bit definitions

WIREMODEa

a. Bits [7:6] of the WCR Register.

Wire operating mode

b00 Reserved

b01 Synchronous (no oversampling)

b1X Reserved
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-29



Functional Description 
Read Resend Register, RESEND (SW-DP only)

The Read Resend Register is always present on any SW-DP implementation. It enables 
the read data to be recovered from a corrupted debugger transfer, without repeating the 
original AP transfer.

It is a 32-bit read-only register at address 0b10 on read operations. Access to the Read 
Resend Register is not affected by the value of the CTRLSEL bit in the SELECT 
Register.

Performing a read to the RESEND register does not capture new data from the access 
port. It returns the value that was returned by the last AP read or DP RDBUFF read.

Reading the RESEND register enables the read data to be recovered from a corrupted 
transfer without having to re-issue the original read request or generate a new DAP or 
system level access.

The RESEND register can be accessed multiple times. It always returns the same value 
until a new access is made to the DP RDBUFF register or to an access port register.
2-30 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Functional Description 
2.6 Access ports

An access port provides the interface between the debug port interface and one or more 
debug components present within the system. The DAP-Lite contains a Memory Access 
Port (MEM-AP), which is designed for connection to memory bus system with address 
and data controls.

All access ports follow a base standard for identification, and debuggers must be able 
to recognize and ignore access ports that they do not support. The connection method 
does not depend on the type of debug port used and the type of access port being 
accessed.

For more information on access ports and recommend debugger interaction with access 
ports, see the ARM Debug Interface v5 Architecture Specification.

2.6.1 Overview

The access port supplied within the DAP-Lite is APB-AP to enable direct connection to 
the dedicated Debug Bus.
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-31



Functional Description 
2.7 APB-AP

The APB-AP implements the MEM-AP architecture to directly connect to an APB 
based system. The intention is that this bus is dedicated to CoreSight and other debug 
components. Figure 2-12 shows the functional blocks of the APB-AP.

Figure 2-12 APB-AP functional blocks

As part of the MEM-AP description, the APB-AP has a number of implementation 
specific features; these are covered in:

• External interfaces

• Implementation features on page 2-33

• Programmer’s model overview on page 2-33

• DAP transfers on page 2-39.

For information on all the registers and features in a MEM-AP, see the ARM Debug 
Interface v5 Architecture Specification.

2.7.1 External interfaces

The primary interface on APB-AP is an APB AMBAv3 compliant interface supporting:

• extended slave transfers

• transfer response errors.

Table 2-12 shows the other APB-AP ports.

Interface Access 
control

APB 
master

DAP internal 
interface

DAPSEL0 APB-AP

APB bus

DAPCLK

DBGSWENABLE
DEVICEEN

Table 2-12 APB-AP other ports

Name Type Description

PDBGSWEN Output Enables software access to the Debug APB at the APB multiplexor

DEVICEEN Input Disables device when LOW
2-32 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Functional Description 
2.7.2 Implementation features

The APB-AP provides the following specific MEM-AP features:

• Auto-incrementing of the Transfer Address Register with address wrapping on 1k 
byte boundaries.

• Slave memory port disabling: a slave interface is provided through the 
APB-MUX to enable another APB master to connect to the same memory map as 
the APB-AP

The AHB-AP does not support the following MEM-AP features:

• Big-endian. All accesses performed as expected to be to a little-endian memory 
structure.

• Sub-word transfers. Only word transfers are supported

The APB-AP supports a synchronous APB interface. The internal DAP interface and 
the APB interface operate from DAPCLK.

The APB-AP has one clock domain, DAPCLK. It drives the complete APB-AP. This 
must be connected to PCLKDBG for the APB interface.

DAPRESETn resets the internal DAP interface and the APB interface.

2.7.3 Programmer’s model overview

Table 2-13 shows the APB-AP registers. 

Table 2-13 APB-AP registers

Offset Type Width Reset value Name

0x00 R/W 32 0x00000002 Control/Status Word, CSW

0x04 R/W 32 0x00000000 Transfer Address, TAR

0x08 - - - Reserved SBZ

0x0C R/W 32 - Data Read/Write, DRW

0x10 R/W 32 - Banked Data 0, BD0

0x14 R/W 32 - Banked Data 1, BD1

0x18 R/W 32 - Banked Data 2, BD2

0x1C R/W 32 - Banked Data 3, BD3
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-33



Functional Description 
The APB-AP registers are described in:

• APB-AP Control/Status Word Register, CSW, 0x00

• APB-AP Transfer Address Register, TAR, 0x04 on page 2-36

• APB-AP Data Read/Write Register, DRW, 0x0C on page 2-37

• APB-AP Banked Data Registers, BD0-BD3, 0x10-0x1C on page 2-37

• Debug APB ROM Address, ROM, 0xF8 on page 2-38

• APB-AP Identification Register on page 2-38.

2.7.4 APB-AP Control/Status Word Register, CSW, 0x00

The APB-AP Control/Status Word Register is used to configure and control transfers 
through the APB interface. Figure 2-13 shows the bit assignments.

Figure 2-13 APB-AP Control/Status Word Register bit assignments

0x20-0xF4 - - - Reserved SBZ

0x80000000 RO 32 Implementation-defined. Debug ROM Address, ROM

0xFC RO 32 0x14770002 Identification Register, IDR

Table 2-13 APB-AP registers (continued)

Offset Type Width Reset value Name

31 30 12 11 8 7 6 5 4 3 2

DbgSwEnable

Reserved Mode

0

Size
TrInProg

DeviceEn

AddrInc

Reserved
2-34 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Functional Description 
Table 2-14 shows the bit assignments.

Table 2-14 APB Control/Status Word Register bit assignments

Bits Type Name Function

[31] R/W DbgSwEnable Software access enable.

Drives DBGSWENABLE to enable or disable software access to the Debug APB 
bus in the APB multiplexor.

b1 = Enable software access

b0 = Disable software access.

Reset value = b0. On exit from reset, defaults to b1 to enable software access.

[30:12] - - Reserved SBZ.

[11:8] R/W Mode Specifies the mode of operation.

b0000 = Normal download/upload model

b0001-b1111 = Reserved SBZ.

Reset value = b0000.

 [7] RO TrInProg Transfer in progress. This field indicates if a transfer is currently in progress on the 
APB master port.

[6] RO DeviceEn Indicates the status of the DEVICEEN input.

• If APB-AP is connected to the Debug APB, that is, a bus connected only to 
debug and trace components, it must be permanently enabled by tying 
DEVICEEN HIGH. This ensures that trace components can still be 
programmed when DBGEN is LOW. In practice, it is expected that the 
APB-AP is almost always used in this way.

• If APB-AP is connected to a system APB dedicated to the non-secure world, 
DEVICEEN must be connected to DBGEN.

• If APB-AP is connected to a system APB dedicated to the secure world, 
DEVICEEN must be connected to SPIDEN.
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-35



Functional Description 
2.7.5 APB-AP Transfer Address Register, TAR, 0x04

The Transfer Address Register holds the address of the current transfer. Figure 2-14 
shows the bit assignments.

Figure 2-14 APB-AP Transfer Address Register bit assignments

[5:4] R/W AddrInc Auto address increment and packing mode on Read or Write data access. Does not 
increment if the transaction completes with an error response or the transaction is 
aborted.

Auto address incrementing is not performed on access to banked data registers 
0x10-0x1C.

The status of these bits is ignored in these cases. 

b11 = Reserved

b10 = Reserved

b01 = Increment

b00 = Auto increment OFF.

Increment occurs in word steps.

Reset value = b00.

[3] - - Reserved SBZ.

[2:0] RO Size Size of the access to perform.

Fixed at b010 = 32 bits.

Reset value = b010.

Table 2-14 APB Control/Status Word Register bit assignments (continued)

Bits Type Name Function

Address

31 2 1 0

Reserved
2-36 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Functional Description 
Writes to the Transfer Address Register from the DAP interface write to bits [31:2] only. 
Bits [1:0] of DAPWDATA are ignored on writes to the Transfer Address Register. 
Table 2-15 shows the bit assignments. 

2.7.6 APB-AP Data Read/Write Register, DRW, 0x0C

Table 2-16 shows the bit assignments of the APB-AP Data Read/Write Register.

2.7.7 APB-AP Banked Data Registers, BD0-BD3, 0x10-0x1C

BD0-BD3 provide a mechanism for directly mapping through DAP accesses to APB 
transfers without having to rewrite the Transfer Address Register within a four word 
boundary. For example, BD0 reads/write from TAR, and BD1 from TAR+4.

Table 2-15 APB-AP Transfer Address Register bit assignments

Bits Type Name Function

[31:2] R/W Address[31:2] Address[31:2] of the current transfer. 

PADDR[31:2]=TAR[31:2] for accesses from Data Read/Write Register at 0x0C.

PADDR[31:2]=TAR[31:4]+DAPADDR[3:2] for accesses from Banked Data 
Registers at 0x10-0x1C and 0x0C.

[1:0] - Reserved SBZ Set to 2’b00. SBZ/RAZ.

Table 2-16 ABP-AP Data Read/Write Register bit assignments

Bits Type Name Function

[31:0] R/W Data Write mode: Data value to write for the current transfer.

Read mode: Data value read from the current transfer.
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-37



Functional Description 
Table 2-17 shows the bit assignments. 

2.7.8 Debug APB ROM Address, ROM, 0xF8

A ROM table must be present in all CoreSight systems. See ROM table programmer’s 
model on page 2-46 for more information. Figure 2-15 shows the bit assignments.

Figure 2-15 Debug APB ROM Address Register bit assignments

Table 2-18 shows the bit assignments.

2.7.9 APB-AP Identification Register

Figure 2-16 on page 2-39 shows the APB-AP Identification Register bit assignments. 

Table 2-17 APB-AP Banked Data Registers bit assignments

Bits Type Name Function

[31:0] R/W Data If DAPADDR[7:4] = 0x0001, so accessing APB-AP registers in the range 0x10-0x1C, then the 
derived PADDR[31:0] is:

• Write mode: Data value to write for the current transfer to external address TAR[31:4] 
+ DAPADDR[3:2] + 2'b00.

• Read mode: Data value read from the current transfer from external address TAR[31:4] 
+ DAPADDR[3:2] + 2'b00.

Auto address incrementing is not performed on DAP accesses to BD0-BD3.

Reset value = 0x00000000

31 12 11 0

ROM Address [31:12] ROM Address [11:0]

Table 2-18 Debug APB ROM Address Register bit assignments

Bits Type Name Function

[31:12] RO ROM Address [31:12] Base address of the ROM table. The ROM provides a look-up table of all 
CoreSight Debug APB components. Read only. Set to 0xFFFFF if no ROM is 
present. In the initial CoreSight release this must be set to 0x80000.

[11:0] RO ROM Address [11:0] Set to 0x000 if ROM is present. Set to 0xFFF if ROM table is not present. In 
the initial CoreSight release this must be set to 0x000.
2-38 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Functional Description 
Figure 2-16 APB-AP Identification Register bit assignments

Table 2-19 shows the APB-AP Identification Register bit assignments.

2.7.10 DAP transfers

This section describes DAP transfers.

Effects of DAPABORT

The APB-AP does not cancel the system-facing operation and returns DAPREADY 
HIGH one cycle after DAPABORT has been asserted by the debug port. The externally 
driving APB master port does not violate the APB protocol. After a transfer has been 
aborted, the Control and Status Register can be read to determine the state of the transfer 
in progress bit, TrInProg. When TrInProg returns to zero, either because of the external 
transfer completing or a reset, the APB-AP returns to normal operation. All other writes 
to the APB-AP are ignored until this bit is returned LOW after a Transfer Abort.

APB-AP error response generation

APB-AP error response generation is described in:

• System initiated error response on page 2-40

• AP-initiated error response on page 2-40

• Differentiation between System-initiated and AP-initiated error responses on 
page 2-40

Revision

31 28 27 24 23 17 16 15 8 7 0

JEDEC 
bank JEDEC code A

P Reserved Identity value

Table 2-19 APB-AP Identification Register bit assignments

Bits Type Name

[31:28] RO Revision. Reset value is 0x1 for APB-AP.

[27:24] RO JEDEC bank. 0x4 indicates ARM Limited.

[23:17] RO JEDEC code. 0x3B indicates ARM Limited.

[16] RO Memory AP. 0x1 indicates a standard register map is used.

[15:8] - Reserved SBZ.

[7:0] RO Identity value. Reset value is 0x02 for APB-AP.
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-39



Functional Description 
System initiated error response

An error response received on the APB master interface propagates onto the DAP bus 
as the transfer is completed. This is received by the debug ports.

AP-initiated error response

• APB-AP reads after an abort:

After a Transfer Abort operation has been carried out, and an external transfer is 
still pending, that is, the TrInProg bit in the Control/Status Word Register is still 
HIGH, reads of all registers return a normal response except for reads of the data 
registers Data Read/Write Register and banked registers which cannot initiate a 
new system read transfer. Reads of the Data Read/Write Register and banked 
registers return an error response until the TrInProg bit is cleared because of the 
system transfer completing, or a reset.

• APB-AP writes after an abort:

After a Transfer Abort operation has been carried out, and an external transfer is 
still pending, that is, the transfer in progress bit is still HIGH, all writes to the 
access port return an error response, because they are ignored until the TrInProg 
bit has cleared.

Differentiation between System-initiated and AP-initiated error responses

If DAPSLVERR is HIGH and TrInProg is LOW in the Control/Status Word Register 
then the error is from a system error response.

If DAPSLVERR is HIGH and TrInProg is HIGH, then the error is from an access port 
error response. The transfer has not been accepted by the access port. This case can only 
occur after an abort has been initiated and the system transfer has not completed.
2-40 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Functional Description 
2.8 APB-Mux

The APB Multiplexor (APB-Mux) for the DAP-Lite enables external tools and system 
access to the Debug APB. The APB-Mux encapsulates the multiple interfaces into a 
single deliverable component, enabling multi-master access to the Debug APB. 

Figure 2-17 shows the APB-Mux. External tool connection to the APB-Mux uses the 
APB Access Port (APB-AP) to provide an APB master interface. System access requires 
an APB bridge to provide the APB master interface.

Figure 2-17 APB-Mux block diagram

Figure 2-18 shows the APB-Mux integrated into the DAP-Lite. The AP Slave port is 
connected to the APB-AP and the System Slave Port to the system bus. The system bus 
requires an APB bridge to connect to the APB-Mux. APB-AP and system connections 
must be made in the order shown in Figure 2-17 to support distinct debug and system 
power domains. 

Figure 2-18 APB-Mux integrated into the DAP-Lite

The APB-Mux is described in:

• APB-Mux port definitions on page 2-42

APBv3 system 
(SYS slave port)

APBv3 APB-AP 
(AP slave port)

APBv3 debug
(DBG master 

port)
Arbitration APB

APB

APB

APB-Mux

From system bus

From APB-AP

Debug APB

SWJ-DP APB-AP APB-Mux

AXI to 
APBv3 
bridge

DBGSWENABLE

APBv3

Power and 
reset controller

System AXI

Debug APB

DEVICEEN
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-41



Functional Description 
• APB-Mux miscellaneous signals

• APB-Mux arbitration and connectivity

• APB-Mux software access enable on page 2-43

• APB-Mux clocks, power, and resets on page 2-43.

2.8.1 APB-Mux port definitions

The APB-Mux has the following ports:

• an APB-AP slave port, signals suffixed with AP

• a system slave port, signals suffixed with SYS

• a Debug APB master port, signals suffixed with DBG.

Additional APB-Mux signals are described in APB-Mux miscellaneous signals.

2.8.2 APB-Mux miscellaneous signals

Table 2-20 shows the APB-Mux miscellaneous signals.

2.8.3 APB-Mux arbitration and connectivity

This section describes APB-Mux arbitration and connectivity:

• APB-Mux arbitration

• APB-Mux connectivity on page 2-43.

APB-Mux arbitration

The APB-Mux uses a fixed arbitration scheme to support the two slave interfaces. The 
arbitration logic ensures that only one APB bus master, either the APB-AP, or system 
bus master has access to the Debug APB at any one time. 

Table 2-20 APB-Mux miscellaneous signals

Name Type Description

nCDBGPWRDN Input Indicates that the debug infrastructure is powered down. Any system accesses to the debug 
APB returns an error response. Also enables clamping of signals driven onto the system 
interface, and clamping of inputs to the debug domain.

nCSOCPWRDN Input Indicates that the system APB slave interface is powered down and enables clamping of 
signals driven into the APB-Mux. Also clamps inputs to the system domain.

DBGSWENABLE Input Enables software access to the Debug APB.
2-42 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Functional Description 
The AP Slave port always has priority over the System Slave port. If two transfers are 
initiated at the same time then the transfer from the AP Slave port is always propagated 
to the master port output for Debug APB access. The System Slave port is only granted 
access if the AP Slave port is not requesting an access, that is, PSELAP is LOW. It is 
therefore possible for the AP Slave port to maintain back-to-back transfers on the Debug 
APB without enabling access to the System Slave port. When a transaction is in 
progress on one slave port and the other port initiates a transaction, PREADY is held 
LOW for the newly requested transaction until the APB-Mux arbiter grants access to 
the other slave port.

The APB-Mux provides no address decoding or default response generation. This must 
be implemented by an external address decoder incorporating a default slave.

APB-Mux connectivity

The connection rules are:

• AP Slave port connects to the APB-AP

• System Slave port connects to the system bus.

2.8.4 APB-Mux software access enable

The APB-Mux receives DBGSWENABLE from the APB-AP to enable software 
access from the System Slave Port to the Debug APB.

DBGSWENABLE LOW 

System access to the Debug APB is not permitted. The System Slave port 
must return PSLVERRSYS HIGH on any access. No APB-Mux master 
transfer is initiated.

DBGSWENABLE HIGH 

System access to the Debug APB is permitted.

2.8.5 APB-Mux clocks, power, and resets

The APB-Mux has two clocks:

PCLKDBG Drives all logic, except for the System Slave port interface.

PCLKSYS Drives the System Slave port interface.

The APB-Mux has an asynchronous interface between the System Slave port and the 
rest of the APB-Mux, as shown in Figure 2-19 on page 2-44. The asynchronous 
interface defines a common boundary between:

• debug and system clocks domains, PCLKDBG and PCLKSYS
• debug and system reset domains, PRESETDBGn and PRESETSYSn
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-43



Functional Description 
• debug and system power domains.

Figure 2-19 APB-Mux domains

Effects of power down

The debug and system power domains can be independently powered up and down. 
Accesses from tools to the debug APB through the APB-Mux can only be performed 
when the Debug APB is powered up, therefore this access mechanism crosses no 
asynchronous domains. PSLVERRAP is only returned HIGH if a Debug APB 
component has driven this signal HIGH. A system access to the Debug APB, when the 
Debug APB is powered down, must return PSLVERRSYS HIGH to indicate that a 
transaction is unsuccessful. nCDBGPWRDN enables the APB-Mux to detect if the 
debug domain is powered down. 

Effects of resets

The debug and system domains can be independently reset. A reset initiated from either 
domain must not cause a protocol violation in the other domain.

• If the Debug APB is reset during a system level write access to the debug 
infrastructure then the System Slave port must return PSLVERRSYS HIGH. The 
write operation is not performed.

• If the Debug APB is reset during a system level read access to the debug 
infrastructure then the System Slave port must return PSLVERRSYS HIGH. The 
read data is undefined.

• If the System APB is reset during a Debug APB access from the APB-AP, then 
this must not invalidate the existing transfer already in progress from the AP Slave 
port on the APB-Mux.

APBv3 system 
(SYS slave port)

APBv3 APB-AP 
(AP slave port)

APB
master portArbitration APB

APB

APB

APB-Mux

From system bus

From APB-AP

Debug APB

PRESETnSystem 
domain

PRESETDBGn
2-44 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Functional Description 
• If the System APB is reset during a system level access to the debug infrastructure 
then the APB-Mux must hold the existing transfer values to complete the Debug 
APB transaction without violating the APB protocol. A system write transfer to 
Debug APB, if already initiated, must complete. A system read transfer to Debug 
APB, if already initiated, must complete up to the APB-Mux master interface.

Output clamping

If the APB-Mux is split across multiple power domains, with the PCLKDBG driven 
side within the Debug domain, and the system slave port in the SoC power domain, then 
clamping logic must be instantiated on the outputs of signals crossing each power down 
domain.

Figure 2-20 shows the RTL structure to support power domain separation.

Figure 2-20 APB-Mux power domain separation

DAPApbMuxDBG.v DAPApbMuxSOC.v
DAPApbMuxCLAMP.v

DAPAPBMUX.v

nCSOCPWRDN
To and from Debug APB

To and from APB-AP To and from System APBnCDBGPWRDN
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-45



Functional Description 
2.9 ROM table

The DAP-Lite provides a configurable internal Read Only Memory (ROM) table 
connected to the master Debug APB port of the APB-Mux. The Debug ROM table is 
loaded at address 0x00000000 and 0x80000000 of this bus and is accessible from both 
APB-AP and the system APB input. Bit 31 of the address bus is not connected to the 
ROM Table, ensuring that both views read the same value. The ROM table stores the 
locations of the components on the Debug APB. See the CoreSight Architecture 
Specification for more information. This ROM table will typically be configured to list 
all of the CoreSight components in a system.

The ROM table has a standard APB interface except for the exclusion of 
PWRITEDBG and PWDATADBG. All transfers are assumed to be reads. The ROM 
table is a read-only device and writes are ignored. 

The ROM table is described in:

• ROM table programmer’s model

• ROM table entries on page 2-48.

2.9.1 ROM table programmer’s model

Table 2-21 shows the ROM table registers. The values of the table entries depend on the 
debug subsystem that is implemented.

Table 2-21 ROM table registers

Offset Type Bits Name Function

0xFDC - [7:0] Peripheral ID7 Unused -Reserved SBZ for future use. Read as 0x00.

0xFD8 - [7:0] Peripheral ID6 Unused -Reserved SBZ for future use. Read as 0x00.

0xFD4 - [7:0] Peripheral ID5 Unused -Reserved SBZ for future use. Read as 0x00.

0xFD0 RO [7:4] Peripheral ID4 4KB count, set to 0x0.

[3:0] JEP106 continuation code, implementation configurable.

0xFEC RO [7:4] Peripheral ID3 RevAnd, at top level, implementation configurable.

[3:0] Customer Modified, implementation configurable.
2-46 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Functional Description 
The ROM table has a specific PrimeCell class. In all registers 0xFD0-0xFFC, bits [31:8] 
are reserved and must be read as zero. Locations 0xF00-0xFCC are reserved and must be 
read as zero.

Note
 The Peripheral ID values must be a product specific identifier for the entire system.

0xFE8 RO [7:4] Peripheral ID2 Revision number of Peripheral, implementation 
configurable.

[3] 1 = Indicates that a JEDEC assigned value is used.

0 = Indicates that a JEDEC assigned value is not used.

[2:0] JEP106 Identity Code [6:4], implementation configurable.

0xFE4 RO [7:4] Peripheral ID1 JEP106 Identity Code [3:0], implementation configurable.

[3:0] PartNumber1, implementation configurable.

0xFE0 RO [7:0] Peripheral ID0 PartNumber0, implementation configurable.

0xFF0 RO [7:0] Component ID0 Preamble - Set to 0x0D.

0xFF4 RO [7:0] Component ID1 Preamble - Set to 0x10.

0xFF8 RO [7:0] Component ID2 Preamble - Set to 0x05.

0xFFC RO [7:0] Component ID3 Preamble - Set to 0xB1.

Table 2-21 ROM table registers (continued)

Offset Type Bits Name Function
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-47



Functional Description 
2.9.2 ROM table entries

Table 2-22 shows the ROM table entries bit assignments for each entry in the 
0x000-0xEFC region.

The last entry in the ROM table has the value 0x00000000, which is reserved. If the 
CoreSight component occupies several consecutive 4KB blocks, the base address of the 
lowest block in memory is given. The locations of components are stored in sequential 
locations with the ROM table. The entry following the last component in the table must 
read 0x00000000, and subsequent locations are assumed to read as zero.

Table 2-22 ROM table entries bit assignments

Bits Name Description

[31:12] Address offset Base address of the component, relative to the ROM address. 
Negative values are permitted using two's complement.

ComponentAddress = ROMAddress + (AddressOffset SHL 12).

[11:2] - Reserved SBZ, read as zero.

[1] Format 1 = 32-bit format. In the DAP-Lite Debug ROM this is set to 1.

0 = 8-bit format.

[0] Entry present Set HIGH to indicate an entry is present.
2-48 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Functional Description 
2.10 Authentication requirements

This section describes the functionality that must be available in the debug and trace 
components to permit authentication using the signals, and describes how they must be 
connected. If you do not require the system to support this level of control, then you can 
simplify the system design.

The full authentication requirements are defined in the CoreSight Architecture 
Specification.

APB-AP has one authentication signal, called DEVICEEN:

• If the APB-AP is connected to a debug bus, this signal must be tied HIGH. 

• If the APB-AP is connected to a system bus dedicated to the secure world, this 
signal must be connected to SPIDEN.

• If the APB-AP is connected to a system bus dedicated to the non-secure world, 
this signal must be connected to DBGEN.

For more information about SPIDEN and DBGEN, see the CoreSight Architecture 
Specification.
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-49



Functional Description 
2.11 Clocks and resets

DAPCLK must be driven by a constant clock. It must not be stopped or altered while 
the DAP-Lite is in use. DAPCLKEN can be used as a clock gating term to reduce the 
effective clock speed from DAPCLK.

DAPRESETn initializes the state of all registers within the DAPCLK domain. 
DAPRESETn enables initialization of the DAP-Lite without affecting the normal 
operation of the SoC in which the DAP-Lite is integrated, and must be driven by the 
tools on external connection to the debug port. The reset can be initiated by writing to 
the control register of the SWJ-DP. This resets all the registers in the Debug clock 
domain, that is, Debug APB and DAPCLK domains.

Note
 For this release of the DAP-Lite, DAPCLK is not presented at the top level port list and 
is internally connected to PCLKDBG. DAPCLKEN is connected to PCLKENDBG, 
and DAPRESETn is connected to PRESETDBGn.
2-50 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Functional Description 
2.12 Connections to debug components and system interfaces

Figure 2-21 shows how debug components and a system bus can be accessed through 
the DAP-Lite. System access is only possible from JTAG through the processor. Debug 
components can be accessed by either software, or the DAP-Lite, or both, depending on 
the configuration of the AXI bus matrix. 

Figure 2-21 Debug trace with a single core

Debug APB

SWJ 
DP

APB 
AP

APB 
Mux TPIU-Lite

APB bridge

ARM 
Cortex core

Memory

 ETM

AXI

DAP-Lite
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 2-51



Functional Description 
2-52 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Chapter 3 
Programmer’s Model

This chapter describes the CoreSight DAP-Lite programmer’s model. It contains the 
following section:

• About the programmer’s model on page 3-2.
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. 3-1



Programmer’s Model 
3.1 About the programmer’s model

There is no single programmer’s model for the DAP-Lite. It consists of a number of 
blocks, and their programmer’s models are described in the following sections:

• JTAG-DP on page 2-11

• APB-AP on page 2-32

• ROM table on page 2-46.

The following apply to all DAP-Lite registers:

• All registers must be accessed as 32-bit.

• Reserved or unused address locations must not be accessed because this can result 
in Unpredictable behavior.

• Reserved or unused bits of registers must be written as zero, and ignored on read 
unless otherwise stated in the relevant text.

• All register bits are reset to a logic 0 by a system or power-on reset unless 
otherwise stated in the relevant text.

• All registers support Read and Write (R/W) accesses unless otherwise stated in 
the relevant text. A Write-Only (WO) access updates the contents of a register and 
a Read-Only (RO) access returns the contents of the register.
3-2 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Appendix A 
DAP-Lite Ports

This appendix describes the port and interface signals in the CoreSight DAP-Lite. It 
contains the following section:

• CoreSight DAP signals on page A-2.
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. A-1



DAP-Lite Ports 
A.1 CoreSight DAP signals

Table A-1 shows the CoreSight Debug Access Port (DAP) signals.

Table A-1 CoreSight DAP signals

Name Type Description Clock domain

CDBGPWRUPACK Input Debug Power Domain power-up acknowledge

SWJ-DP

None

CDBGPWRUPREQ Output Debug Power Domain power-up request 

SWJ-DP

None

CDBGRSTACK Input Debug reset acknowledge from reset controller

SWJ-DP

None

CDBGRSTREQ Output Debug reset request to reset controller

SWJ-DP

None

CSYSPWRUPACK Input System Power Domain power-up acknowledge

SWJ-DP

None

CSYSPWRUPREQ Output System Power Domain power-up request 

SWJ-DP

None

DBGSWENABLE Output Enable software access to debug registers when HIGH. Not 
required where access to registers is through the APB-Mux.

APB-AP

PCLKDBG

DEVICEEN Input Enable access to Debug APB from the DAP

APB-AP

None

JTAGNSW Output HIGH if JTAG selected, LOW if SWD selected

SWJ-DP

SWCLKTCK

JTAGTOP Output JTAG state machine is in one of the top four modes:

• Test-Logic-Reset

• Run-Test/Idle

• Select-DR-Scan

• Select-IR-Scan

• SWJ-DP.

SWCLKTCK

nCDBGPWRDN Input Debug infrastructure power-down control

SWJ-DP

None
A-2 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



DAP-Lite Ports 
nCSOCPWRDN Input External system, SOC domain, power-down control

SWJ-DP

None

nPOTRST Input Power-on reset

SWJ-DP

SWCLKTCK

nTDOEN Output TAP Data Out Enable

SWJ-DP

SWCLKTCK

nTRST Input TAP Reset, Asynchronous

SWJ-DP

SWCLKTCK

PADDRDBG[31:2] Output Debug APB address bus

APB-Mux

PCLKDBG

PADDRSYS[30:2] Input System APB address bus

APB-Mux

PCLKSYS

PCLKDBG Input Debug APB clock N/A

PCLKENDBG Input Debug APB clock enable PCLKDBG

PCLKENSYS Input System APB clock enable 

APB-Mux

PCLKSYS

PCLKSYS Input System APB clock, typically HCLK

APB-Mux

PCLKSYS

PENABLEDBG Output Debug APB enable signal, indicates second and subsequent 
cycles

APB-Mux

PCLKDBG

PENABLESYS Input System APB enable signal, indicates second and subsequent 
cycles 

APB-Mux

PCLKSYS

PRDATADBG[31:0] Input Debug APB read data bus PCLKDBG

PRDATASYS[31:0] Output System APB read data bus

APB-Mux

PCLKSYS

PREADYDBG Input Debug APB ready signal PCLKDBG

PREADYSYS Output System APB ready signal 

APB-Mux

PCLKSYS

Table A-1 CoreSight DAP signals (continued)

Name Type Description Clock domain
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. A-3



DAP-Lite Ports 
PRESETDBGn Input Debug APB reset PCLKDBG

PRESETSYSn Input System APB reset 

APB-Mux

PCLKSYS

PSELDBG Output Debug APB select. LOW when accessing the DAP ROM 
APB-Mux

PCLKDBG

PSELSYS Input System APB select 

APB-Mux

PCLKSYS

PSLVERRDBG Input Debug APB transfer error signal PCLKDBG

PSLVERRSYS Output System APB transfer error signal

APB-Mux

PCLKSYS

PWDATADBG[31:0] Output Debug APB write data bus 

APB-Mux

PCLKDBG

PWDATASYS[31:0] Input System APB Write data bus

APB-Mux

PCLKSYS

PWRITEDBG Output Debug APB write transfer 

APB-Mux

PCLKDBG

PWRITESYS Input System APB write transfer 

APB-Mux

PCLKSYS

RSTBYPASS Input nPOTRST reset bypass for DFT

SWJ-DP

N/A

SE Input Scan Enable None

SWCLKTCK Input Serial Wire Clock and TAP Clock 

SWJ-DP

N/A

SWDITMS Input Serial Wire Data Input and TAP Test Mode Select

SWJ-DP

SWCLKTCK

SWDO Output Serial Wire Data Output

SWJ-DP

SWCLKTCK

Table A-1 CoreSight DAP signals (continued)

Name Type Description Clock domain
A-4 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



DAP-Lite Ports 
SWDOEN Output Serial Wire Data Output Enable

SWJ-DP

SWCLKTCK

TDI Input TAP Data In

SWJ-DP

SWCLKTCK

TDO Output TAP Data Out

SWJ-DP

SWCLKTCK

Table A-1 CoreSight DAP signals (continued)

Name Type Description Clock domain
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. A-5



DAP-Lite Ports 
A-6 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Appendix B 
Revisions

This appendix describes the technical changes between released issues of this book.

Table B-1 Differences between issue C and issue D

Change Location

Update block revision information. Table 1-1 on page 1-6

Update Identification Code Register bit assignments. Table 2-5 on page 2-22
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. B-1



Revisions 
B-2 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Glossary

This glossary describes some of the terms used in ARM manuals. Where terms can have 
several meanings, the meaning presented here is intended.

Advanced High-performance Bus (AHB)
The AMBA Advanced High-performance Bus system connects embedded processors 
such as an ARM core to high-performance peripherals, DMA controllers, on-chip 
memory, and interfaces. It is a high-speed, high-bandwidth bus that supports 
multi-master bus management to maximize system performance. 

See also Advanced Microcontroller Bus Architecture.

Advanced Microcontroller Bus Architecture (AMBA)
AMBA is the ARM open standard for multi-master on-chip buses, capable of running 
with multiple masters and slaves. It is an on-chip bus specification that describes a 
strategy for the interconnection and management of functional blocks that make up a 
System-on-Chip (SoC). It aids in the development of embedded processors with one or 
more CPUs or signal processors and multiple peripherals. AMBA complements a 
reusable design methodology by defining a common backbone for SoC modules. AHB, 
APB, and AXI conform to this standard.
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. Glossary-1



Glossary 
Advanced Peripheral Bus (APB)
The AMBA Advanced Peripheral Bus is a simpler bus protocol than AHB. It is designed 
for use with ancillary or general-purpose peripherals such as timers, interrupt 
controllers, UARTs, and I/O ports. Connection to the main system bus is through a 
system-to-peripheral bus bridge that helps to reduce system power consumption. 

See also Advanced High-performance Bus.

AHB See Advanced High-performance Bus.

AMBA See Advanced Microcontroller Bus Architecture.

APB See Advanced Peripheral Bus.

Boundary scan chain
A boundary scan chain is made up of serially-connected devices that implement 
boundary scan technology using a standard JTAG TAP interface. Each device contains 
at least one TAP controller containing shift registers that form the chain connected 
between TDI and TDO, through which test data is shifted. Processors can contain 
several shift registers to enable you to access selected parts of the device.

Byte An 8-bit data item.

Clock gating Gating a clock signal for a macrocell with a control signal and using the modified clock 
that results to control the operating state of the macrocell.

Core A core is that part of a processor that contains the ALU, the datapath, the 
general-purpose registers, the Program Counter, and the instruction decode and control 
circuitry.

CoreSight The infrastructure for monitoring, tracing, and debugging a complete system on chip.

DBGTAP See Debug Test Access Port.

Debug Access Port (DAP)
A TAP block that acts as an AMBA (AHB or AHB-Lite) master for access to a system 
bus. The DAP is the term used to encompass a set of modular blocks that support system 
wide debug. The DAP is a modular component, intended to be extendable to support 
optional access to multiple systems such as memory mapped AHB and CoreSight APB 
through a single debug interface.

Debug Test Access Port (DBGTAP)
The collection of four mandatory and one optional terminals that form the input/output 
and control interface to a JTAG boundary-scan architecture. The mandatory terminals 
are DBGTDI, DBGTDO, DBGTMS, and TCK. The optional terminal is TRST. This 
signal is mandatory in ARM cores because it is used to reset the debug logic.
Glossary-2 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Glossary 
EmbeddedICE logic An on-chip logic block that provides TAP-based debug support for ARM processor 
cores. It is accessed through the TAP controller on the ARM core using the JTAG 
interface.

EmbeddedICE-RT The JTAG-based hardware provided by debuggable ARM processors to aid debugging 
in real-time.

Embedded Trace Macrocell (ETM)
A hardware macrocell that, when connected to a processor core, outputs instruction and 
data trace information on a trace port. The ETM provides processor driven trace through 
a trace port compliant to the ATB protocol.

ETM See Embedded Trace Macrocell.

IEEE 754 standard IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std. 754-1985. The 
standard that defines data types, correct operation, exception types and handling, and 
error bounds for floating-point systems. Most processors are built in compliance with 
the standard in either hardware or a combination of hardware and software.

Implementation-defined
Means that the behavior is not architecturally defined, but must be defined and 
documented by individual implementations.

Joint Test Action Group (JTAG)
The name of the organization that developed standard IEEE 1149.1. This standard 
defines a boundary-scan architecture used for in-circuit testing of integrated circuit 
devices. It is commonly known by the initials JTAG.

JTAG See Joint Test Action Group.

JTAG Debug Port (JTAG-DP)
An optional external interface for the DAP that provides a standard JTAG interface for 
debug access.

JTAG-DP See JTAG Debug Port.

Macrocell A complex logic block with a defined interface and behavior. A typical VLSI system 
comprises several macrocells (such as a processor, an ETM, and a memory block) plus 
application-specific logic.

Multi-ICE A JTAG-based tool for debugging embedded systems.

RealView ICE A system for debugging embedded processor cores using a JTAG interface.
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. Glossary-3



Glossary 
Reserved A field in a control register or instruction format is reserved if the field is to be defined 
by the implementation, or produces Unpredictable results if the contents of the field are 
not zero. These fields are reserved for use in future extensions of the architecture or are 
implementation-specific. All reserved bits not used by the implementation must be 
written as 0 and read as 0.

SBO See Should Be One.

SBZ See Should Be Zero.

SBZP See Should Be Zero or Preserved.

Should Be One (SBO)
Should be written as 1 (or all 1s for bit fields) by software. Writing a 0 produces 
Unpredictable results.

Should Be Zero (SBZ)
Should be written as 0 (or all 0s for bit fields) by software. Writing a 1 produces 
Unpredictable results.

Should Be Zero or Preserved (SBZP)
Should be written as 0 (or all 0s for bit fields) by software, or preserved by writing the 
same value back that has been previously read from the same field on the same 
processor.

TAP See Test access port.

Test Access Port (TAP)
The collection of four mandatory and one optional terminals that form the input/output 
and control interface to a JTAG boundary-scan architecture. The mandatory terminals 
are TDI, TDO, TMS, and TCK. The optional terminal is TRST. This signal is 
mandatory in ARM cores because it is used to reset the debug logic.

TPA See Trace Port Analyzer.

TPIU See Trace Port Interface Unit.

Trace port A port on a device, such as a processor or ASIC, used to output trace information.

Trace Port Analyzer (TPA)
A hardware device that captures trace information output on a trace port. This can be a 
low-cost product designed specifically for trace acquisition, or a logic analyzer.

Trace Port Interface Unit (TPIU)
The TPIU is used to drain trace data and acts as a bridge between the on-chip trace data 
and the data stream captured by a TPA.
Glossary-4 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D



Glossary 
Unpredictable For reads, the data returned when reading from this location is unpredictable. It can have 
any value. For writes, writing to this location causes unpredictable behavior, or an 
unpredictable change in device configuration. Unpredictable instructions must not halt 
or hang the processor, or any part of the system.
ARM DDI 0316D Copyright © 2006 - 2008 ARM Limited. All rights reserved. Glossary-5



Glossary 
Glossary-6 Copyright © 2006 - 2008 ARM Limited. All rights reserved. ARM DDI 0316D


	CoreSight DAP-Lite Technical Reference Manual
	Contents
	List of Tables
	List of Figures
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Conventions
	Typographical
	Timing diagrams
	Signals

	Further reading
	ARM publications


	Feedback
	Feedback on this product
	Feedback on this book


	Introduction
	1.1 About the DAP-Lite
	1.2 DAP-Lite structure
	1.3 DAP-Lite control flow
	1.4 DAP-Lite block summary

	Functional Description
	2.1 About the Debug Port
	2.2 SWJ-DP
	2.2.1 Structure of the SWJ-DP
	2.2.2 Operation of the SWJ-DP
	2.2.3 JTAG and SWD interface
	2.2.4 Clock, reset and power domain support
	2.2.5 SWD and JTAG selection mechanism

	2.3 JTAG-DP
	2.3.1 Overview
	2.3.2 Implementation specific details

	2.4 SW-DP
	2.4.1 Overview
	2.4.2 Implementation specific details
	2.4.3 Transfer timings

	2.5 Common debug port features and registers
	2.5.1 Features overview
	2.5.2 Example pushed operations
	2.5.3 Debug Port registers overview
	2.5.4 Implementation specific registers

	2.6 Access ports
	2.6.1 Overview

	2.7 APB-AP
	2.7.1 External interfaces
	2.7.2 Implementation features
	2.7.3 Programmer’s model overview
	2.7.4 APB-AP Control/Status Word Register, CSW, 0x00
	2.7.5 APB-AP Transfer Address Register, TAR, 0x04
	2.7.6 APB-AP Data Read/Write Register, DRW, 0x0C
	2.7.7 APB-AP Banked Data Registers, BD0-BD3, 0x10-0x1C
	2.7.8 Debug APB ROM Address, ROM, 0xF8
	2.7.9 APB-AP Identification Register
	2.7.10 DAP transfers

	2.8 APB-Mux
	2.8.1 APB-Mux port definitions
	2.8.2 APB-Mux miscellaneous signals
	2.8.3 APB-Mux arbitration and connectivity
	2.8.4 APB-Mux software access enable
	2.8.5 APB-Mux clocks, power, and resets

	2.9 ROM table
	2.9.1 ROM table programmer’s model
	2.9.2 ROM table entries

	2.10 Authentication requirements
	2.11 Clocks and resets
	2.12 Connections to debug components and system interfaces

	Programmer’s Model
	3.1 About the programmer’s model

	DAP-Lite Ports
	A.1 CoreSight DAP signals

	Revisions
	Glossary

